File / dossier : 6.01.07 Date: 2015-10-19 e-Doc: 4865954

Supplementary Information

Renseignements supplémentaires

Oral presentation

Exposé oral

Presentation from Greenpeace

Présentation de Greenpeace

In the Matter of

À l'égard de

Ontario Power Generation Inc.

Ontario Power Generation Inc.

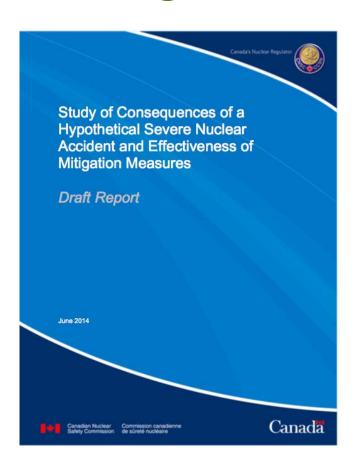
Application to renew the Power Reactor Operating licence for the Darlington Nuclear Generating Station

Demande concernant le renouvellement du permis d'exploitation pour la centrale nucléaire de Darlington


Commission Public Hearing Part 2

Audience publique de la Commission Partie 2

November 2-5, 2015


2-5 novembre 2015

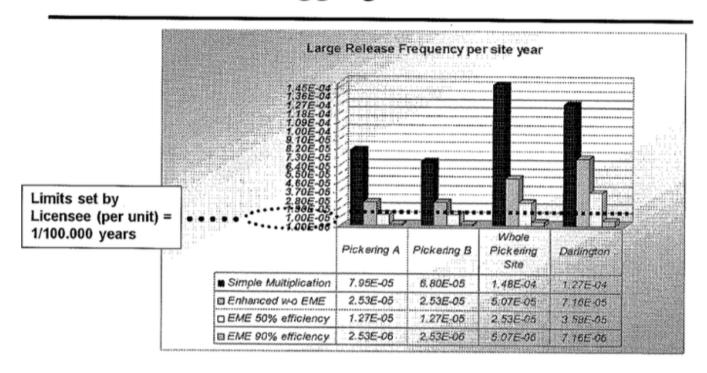
Risking Toronto & The Environment

"The three bears paradigm...": "not too small, not too large; just right." OPG Justification for Original SARP scenarios

I have taken a quick look at the draft submitted; indeed, this will become a focal point of any licence renewal, and despite brilliant attempts to caution readers, this document would be used malevolent-ly [sic] in a public hearing. It's a no-win proposition whatever whatever [sic] we think the Commission requested.

Justification for removing level 7 INES accidents from public study.

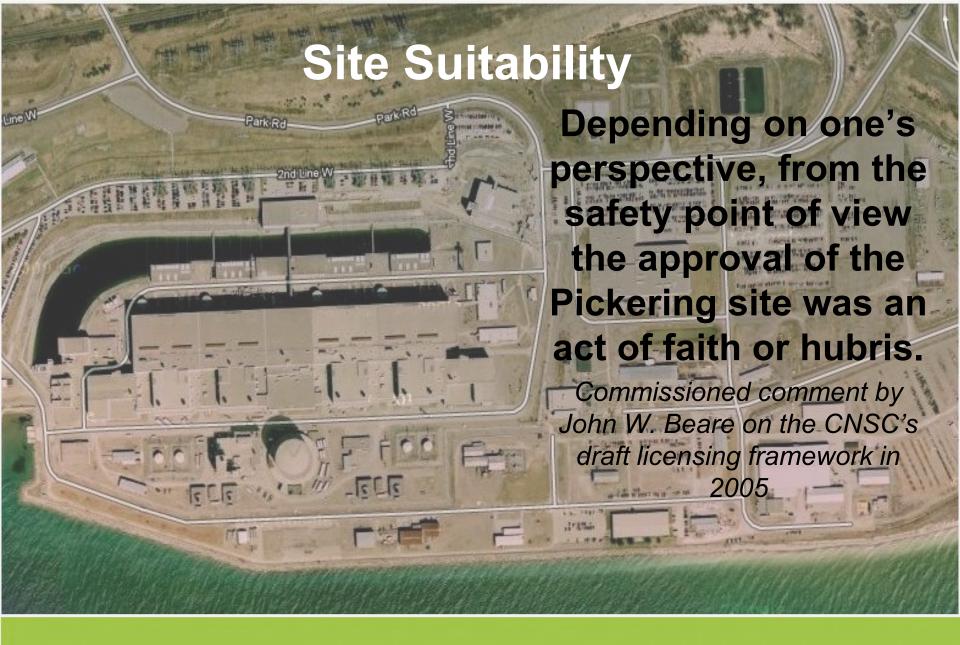
No evidence demonstrating adequacy of last level of defense-in-depth


Site Wide Risk: Greenpeace Concern Validated

	Frequency	LRF limit for	OPG's LRF
	Frequency	New Reactors	Risk Limit
LRF 2014 Simple Multiplication(1)	1.27E-04		
LRF 2014 Enhanced without EME	7.16E-05		
LRF 2014 EME 50% Efficiency	3.58E-05		
LRF 2014 EME 90% Efficiency	7.16E-06		
CNSC 2015 LRF with EME(2)	1.31E-05	1E-6	1E-5
CNSC 2015 LRF with EME & SIOs	7.40E-06		
OPG 2015 with EME	0.98E-05		
OPG 2015 with EME & SIOs	7.40E-06		

Site-wide risk is at least 10 times higher than limit for new reactors

Risk Aggregation for Multi-unit Sites LRF Whole-Site Aggregation



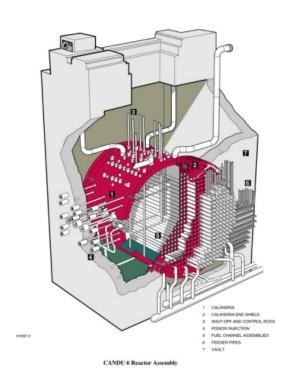
CNSC staff internally admit site-wide risk may be "unreasonable" under the Nuclear Safety and Control Act.

Accident Sequence	Origin of radioactive releases	I-131	Cs-137	INES Level
Release Category 2 & Severe Accident Study Release.	 Proposed by OPG Source term equivalent to lower threshold for large release under RD-337. OPG used the same source term as reference accident in new build environmental assessment. Equivalent to 0.0015% of core inventory of i-131 	4.4E+15	1E+14	INES 6
SARP Multi- Unit Scenario	 Proposed by CNSC staff. RC2 source term multiplied by four to imitate multi-unit accident at Darlington. Equivalent release modeled in past. Equivalent to 0.01% of core inventory of i-131 	1.76E+16	4E+14	INES 6
Suppressed Severe Accident Study Release	 Originally proposed by OPG. RC2 source term multiplied by 10. Was removed from public report because staff feared citizens would use results "malevolently". Equivalent to 0.015% of core inventory of I-131 	4.4E+16	1E+15	INES 7
Release Category 1	 Release of more than 3% of core inventory of I-131. Twenty times larger than RC2 and CNSC's lower threshold for a large release. 98.8% of accident sequences are multi-unit. 	8.76E+16	ŗ	INES 7
Fukushima	Release from 3 Reactors	1.6E+17	1.5E+16	INES 7
Chernobyl	Single Unit Release	1.5E+18	6.2E+16	INES 7

Balancing the Push for EMEs

"So there was a point where we were not satisfied with the numbers coming out of the PSA, in particular for fire and for wind. And in particular, you had sort of pushed -- the Commission had pushed very hard to implement within the PSA what's the EME benefit going to be of these new EMEs. And at the time, that was controversial with respect to nobody really knew how to do that very well."

Gerry Frappier, August 2014


The need for an acceptable framework for EME credit and SAMG guidance in PSA was expressed. This subject may need further discussion. The need for a holistic approach was also highlighted. The methods models should be simple enough to be traceable and applicable. It is also important to note that the PSA modelling is a function of its intended uses.

Summary Report of the CNSC International Workshop on Multi-unit PSA, November 2014

Rushed implementation EMEs raise questions about RD-2.4.2 compliance & quality

Cost Benefit Analysis

En effet, selon les résultats des études préliminaires, la réfection de la centrale, en vue d'en prolonger la durée de vie utile jusqu'à l'horizon 2035, constitue, actuellement, l'option la plus avantageuse du point de vue économique pour continuer de fournir l'énergie produite par Gentilly-2. Il faut toutefois noter que ces avantages économique sont faibles et dépendent de diverse hypothèses dont celles reliées aux exigences imposées par la CCSN

Hydro-Quebec to the CNSC in 2005

Recommendation: The CNSC should require OPG to release the costbenefit analysis used to justify the limited upgrades proposed for the Darlington life-extension

Summary and Recommendations

- The CNSC should not approve the life-extension of Darlington before it has received and publicly reviewed the planning basis for offsite nuclear emergency plans.
- The CNSC needs to publish INES 7 accident scenarios before the lifeextension can be approved.
- •The environmental review should be updated to acknowledge the "adverse effect" caused by the life-extension.
- The CNSC needs to consult and approve siting criteria before the lifeextension is approved.
- •The licensing basis for the station should be updated in light of Fukushima to include external events.
- ·Cost benefit should be reviewed before the life-extension is approved.

Recommendation: The Commission should reject OPG's request to rebuild Darlington and for a 13-year licence

Appendix

Table 5 - Variations in Darlington Large Release Frequency

		DARA 2012 (1)	DARA 2015 (2)		
Release Category	Baseline Predicted Frequency	Enhanced Model with SIOs	Enhanced Model without SIOs	Baseline Predicted Frequency with EMEs	With EME and SIOs (3)
D-RC1					
(A level 7 INES accident with more the 3% of I- 131 to the environment)	4.9E-06	5.1E-08	7.8E-07	5.0E-07	OPG would not provide. Greenpeace Estimate: 2E-7
D-RC2					
(A level 6 INES accident with releases equivalent to the CNSC's severe accident study)	3.7E-07	3.6E-07	5.2E-07	5.2E-07	OPG would not provide. Greenpeace Estimate: 2E-7
D-RC3	0	0	0	0	0
Summed Frequency of Large Releases Categories	5.27E-06	4.11E-07	1.3.6	1E-6	4E-7 (4)

Darlington Risk Assessment (2011)

Table 3: Darlington NGS Level-2 At-power Internal Risk Events Risk Assessment Uncertainty by Release Category (Ref: NK38-REP-03611-10044)

Release Category	Point Estimate Frequency (/r-y)	Mean (/r-y)	5%	50%	95%	Error Factor ¹
RC1	4.88E-06	4.95E-06	6.95E-07	3.22E-06	1.29E-05	4.31
RC2	3.74E-07	3.66E-07	1.10E-08	9.27E-08	1.29E-06	10.83
RC4	1.99E-09	2.23E-09	0.00E+00	9.54E-11	5.57E-09	58.40 ²
RC7	1.45E-06	1.44E-06	1.54E-07	6.84E-07	4.09E-06	5.15
RC8	4.88E-06	4.94E-06	6.90E-07	3.21E-06	1.29E-05	4.32
LRF	5.24E-06	5.40E-06	8.58E-07	3.53E-06	1.42E-05	4.07

Note: The error factor is calculated as follows: $\sqrt{\frac{CutSet(95\%)}{CutSet(5\%)}}$

²Note: For lognormal distributions, the error factor is equal to: $\frac{CutSet(95\%)}{CutSet(50\%)}$. For RC4 this equation is used

Note: Based on Containment Event Trees, no sequences are assigned to end states RC3/RC5/RC6. As there are no sequences assigned to these end states, the frequencies of RC3/RC5/RC6 are zero.

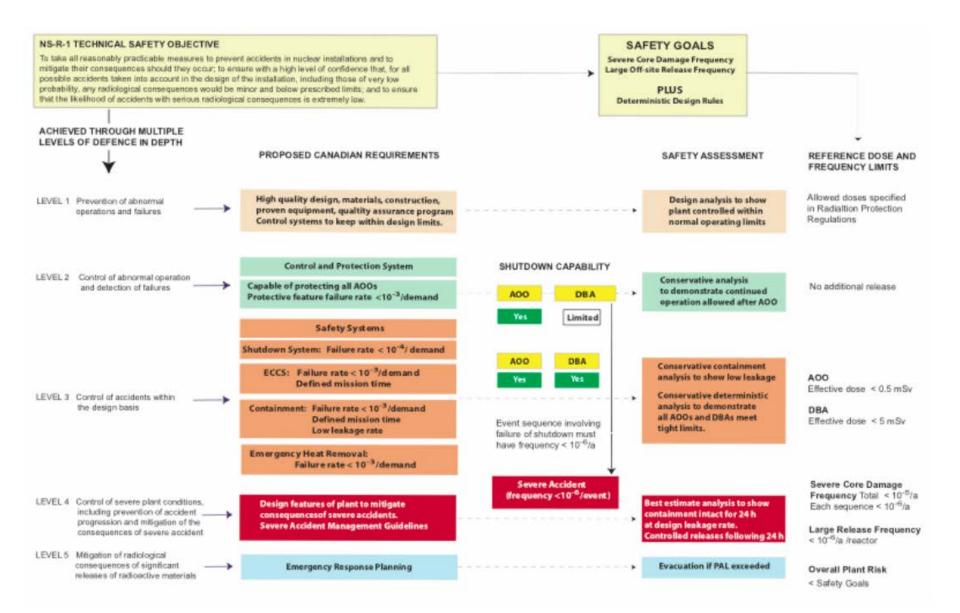
Pickering A Risk Assessment (2013)

<u>Table 1: Pickering NGS 'A' Level-2 At-power Internal Risk Events Risk Assessment Uncertainty</u>
<u>by Release Category (Ref: NA44-REP-03611-00013)</u>

Release Category	Point Estimate Frequency (/r-y)	Mean (/r-y)	5%	50%	95%	Error Factor ¹
RC1	4.69E-06	4.81E-06	1.55E-06	3.46E-06	1.19E-05	2.77
RC3	3.45E-08	3.88E-08	0.00E+00	1.23E-08	1.41E-07	
RC4	3.38E-08	4.25E-08	8.64E-10	1.34E-08	1.57E-07	13.48
LRF	4.71E-06	4.84E-06	1.57E-06	3.48E-06	1.17E-05	2.73

¹Note: The error factor is calculated as follows: $\sqrt{\frac{CutSet(95\%)}{CutSet(5\%)}}$

Note: Based on Containment Event Trees, no sequences are assigned to end states RC2/RC5. As there are no sequences assigned to these end states, the frequencies of RC2/RC5 are zero.


Pickering B Risk Assessment (2012)

<u>Table 2: Pickering NGS 'B' Level-2 At-power Internal Risk Events Risk Assessment Uncertainty</u>
<u>by Release Category (Ref: NK30-REP-03611-00010)</u>

Release Category	Point Estimate Frequency (/r-y)	Mean (/r-y)	5%	50%	95%	Error Factor ¹
RC1	2.92E-06	2.88E-06	2.32E-07	8.38E-07	8.33E-06	5.99
RC3	9.66E-07	8.69E-07	1.74E-08	1.89E-07	2.74E-06	12.55
RC5	2.03E-07	2.12E-07	3.09E-09	3.70E-08	6.23E-07	14.20
LRF	3.88E-06	3.77E-06	3.24E-07	1.19E-06	1.09E-05	5.80

¹Note: The error factor is calculated as follows: $\sqrt{\frac{CutSet(95\%)}{CutSet(5\%)}}$

Note: Based on Containment Event Trees, no sequences are assigned to end states RC2/RC4. As there are no sequences assigned to these end states, the frequencies of RC2/RC4 are zero.

